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Many thin-walled structural elements are compelled to function in transient temperature 
fields. As a result of heat transfer with the environment, fluctuating thermoelastic stresses 
are set up in the elements, where they can lead to dynamic loss of stability [I]. The sim- 
plest system in which such effects are observed is a metal string or fine wire with an al- 
ternating electric current flowing in it [2]. The alternating temperature field created by 
Joule heat induces a period modulation of the tension on the string and, under certain con- 
ditions, the parametric excitation of vibrations. 

We have investigated experimentally and theoretically the excitation of transverse vibra- 
tions of a string (flexible wire) with a high-density alternating current flowing in it. The 
theoretical model adopted here can be used to calculate the thresholds of parametric insta- 
bility and the dependence of the steady-state vibration amplitude on the ac power and the 
deviation from resonance, all with a high degree of accuracy. On the other hand, it does not 
predict the existence of hard excitation regimes or the cutoff of vibrations. 

EXPERIMENTAL 

When an alternating electric current at the line frequency (50 Hz) flows in a metal 
string (wire), its temperature rises as a result of Joule heat. In the experimental work, 
the static elongation of the wire due to the increase in its mean temperature was selected 
under the action of a tensile load No, which specified the constant component of the tension. 

The experimental arrangement is shown schematically in Fig. I, including the "string" 
of high-resistance wire I, the load 2 governing the constant tension, and the tapped coil 3. 

The current I 0 and the voltage across the working section were measured by an ammeter 
(A) and voltmeter (V) of precision class 1.5. The temperature of the wire was determined 
with a Promin' industrial pyrometer, which is capable of measuring the temperature in the 
range I075-5273~ within I-1.5% error limits. The tension No on the string was set by means 
of a lever device and was varied discretely in 10 -~ N steps by means of small weights. This 
technique permitted a reasonably smooth variation of the natural frequency of the string, 
which was calculated according to the equation 

where n is the order of the vibrational mode, p is the density, S is the cross section of the 
string at the temperature To, a T is the coefficient of linear expansion, and Tm, To are the 
mean absolute temperatures of the heated string and the cold string, respectively. The angu- 
lar frequency ~n was monitored stroboscopically. Thermodynamic excitation of the first nine 
modes was observed in the experiments. The higher the mode order in this case, the softer 
was the excitation. In higher modes (n ~ 4), however, the vibration amplitude was small and 
therefore difficult to measure, while the excitation of the first mode required greater ten- 
sion, resulting in partial cutoffs in the heating of the string. Consequently, the majority 
of the experiments were conducted in the second mode. Wires made from higher-resistance ma- 
terials (Nichrome, German silver, Constantan, etc.) with a diameter d = 0.1-0.5 mm and a 
length of I mm or more were used for the experimental string. 

Here we give the experimental results for Nichrome wire Kh20N80 of diameter d = 0.35 mm 
and length I = I m. Figure 2 shows the resonance curve A = A(~), along with the experimental 
data and the dependence of the string vibration amplitude on the relative deviation from 
resonance ~ = (~n -- w)/~ for ac power values W1 = 107 W and W2 = 170 W (points 3 and 4, ~ = 
100~). 
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The dependence of the steady-state vibration amplitude on the ae power is shown in Fig. 
3 (the experimental data are represented by triangles). Figure 4 shows the mean temperature 
Tm as a function of the ac power W in the interval 1123-1430~ at the nodes (line I) and 
antinodes (line 2) of the vibrating string. It is seen that the temperature of the string 
at the nodes is approximately 150-200~ higher than at the antinodes. 

THEORETICAL ANALYSIS 

The thermoparametric excitation of transverse vibrations of an elastic current-carrying 
string can be analyzed theoretically within the framework of nonlinear dynamical problems of 
thermoelasticity [I] with allowance for interaction between longitudinal and transverse vibra- 
tions of the string [3] and also for heat transfer between the heated string and the environ- 
ment [4]. 

The following nonlinear boundary-value problem can be taken as the analytical model: 

~ t  ~ ~ L <-;~'~ + Y \'-C'x / j - p o ~  
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~T 02T 2a  2e~ . 4 . .  W (t) avTmK 02 u 
0t - Z ~ j + T S 7  (r-ro)+--~-Tp~ (7 --T~)-- mm pr a~ot; (3) 

Ou I No (4) 

where u(x, t) and w(x, t) are the longitudinal and transverse dispalcements of the string, 
respectively; v e = (e/p) I/2 , v0 = (N0/p) I/2 are the longitudinal and transverse wave veloci- 
ties in the string; E and K are the Young's modulus and bulk compression modulus of the string 
material*; T is the absolute temperature of the string; T m is the mean temperature of the 

heated string, (T -- T m) ~ Tm; To ~ 290~ is the ambient temperature; p is the bulk density; 
61 and 62 are the linear and nonlinear damping factors; Z~ • is the thermal diffusivity; c 
is the specific heat of the material; e is the heat-transfer coefficient; r is the radius of 
the string, and S = ~r 2 is its cross section; o = 5.6.10 -8 W/m2.~ 4 is the Stefan--Boltzmann 
constant; ~ < I is the emissitivity (graybody factor); and W(t) = 10v0 cos 2 ~t is the power of 

the Joule heat. 

The first two equations describe coupled longitudinal--transverse vibrations of an elastic 
string [3] with allowance for thermal stresses [I], as well as the linear and nonlinear damp- 
ing of transverse vibrations [5]. Equation (3) describes a thickness-uniform temperature 
field in the string in the presence of convective and radiative heat transfer with the sur- 
rounding air [4]. The terms on the right-hand side of (3) determine the heat release due to 
Joule heat and the self-heating due to the alternating longitudinal strains. The influence 
of the transverse vibrations of the string on its heat transfer with the surrounding air is 
ignored in the given equation. This problem has received very little attention either theo- 
retically or experimentally. Only in occasional papers (see, e.g., [6]) is there an indica- 
tion that transverse vibrations tend to increase the rate of convective heat transfer several- 
fold. We also neglect the relaxation processes mentioned in [7]. 

It appears to be impossible to solve the nonlinear problem (I)-(4) analytically in the 
general case. We introduce a number of simplifications, which follows from an analysis of 
the specific experimental situation. The small self-heating effect %$2u/~x~t can be neglected 

*The moduli E and K are evaluated at the mean temperature of the heated string T = T m. 
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in the heat-conduction equation in comparison with the Joule heat, and the heat transfer 
along the string ~x3iT/Sx 2 can be neglected in comparison with the heat transfer to the sur- 
rounding air. Moreover, the velocity component 3u/3t is much smaller than 3w/3t, and it can 
be neglected in Eq. (I) [3]. In this case the elongation of the string not depend on the co- 
ordinate x and it is a function of the time. Integrating Eq. (I) with respect to the coor- 
dinate and invoking the boundary conditions (4), we arrive at the problem 

02w . ~ [ ~ 
; . ,  [ t - - ' ~ . . 2  0 (t) 
i]t" -- v~ pv o {!(I} ] '02w v'[ " Ow 2dx  02w i)m . Ow w2 
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(7) 
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where O (t) = T -- T m is the temperature fluctuation about the mean value Tm; ee = 2(~ + 
4sOTm3)/cpr is the effective heat-transfer coefficient; and W0 = (I/2)I0v0. 

Equation (7) characterizes the dependence of the mean temperature T m of the string on 
the Joule heat power, and Eq. (6) describes its small time fluctuations: 

Wo ~e 
O ( t ) = O  osin(2 ~ + ~ o ) ,  O o =  tg~o--  2<o" 

Slpc  V ~ 2 ,--'-----~-' i a e  T 4o~ 

F o r  a known law g o v e r n i n g  t h e  v a r i a t i o n  of  t h e  t e m p e r a t u r e  O(t) , t h e  i n t e g r o d i f f e r e n t i a l  e q u a -  
t i o n  (5) describes the nonlinear thermoparametric vibrations of the string. In the experi- 
ments, as a rule, we observed the excitation of vibrations at one of the natural frequencies 
of the system, and so we confine the discussion to particular solutions of the form 

mn(~', t) - % ( 0  sin k , : ,  

where  k n = ( ~ n / ~ )  (n  = 1, 2 ,  3 , . . . )  i s  t h e  wave n u m b e r  of  t h e  e x c i t e d  mode.  F o r  q n ( t )  we 
obtain from (5) a nonlinear equation that is well known in the theory of parametric vibra- 
tions [5, 8, 9]: 

.2 .4 , \ 
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where m ~TI,~ Oo, f~' -~. is the modulation factor for the tension of the string and w n = v0k n is 
the natural frequency of the string in the linear approximation. The solution fo.r the prin- 
cipal domain of parametric instability is sought in the form 

"<ln(t ) il(~lt] sill ((or -4: q(pl))  - i  ~K)(l), ( 1 0 )  

where A(,utL rr(!,t) are the slowly varying amplitude and phase of the vibrations and ~Q(t) is a 
small correction to the solution, ~ << I. Requiring boundedness of Q(t), we obtain the fol- 
lowing truncated equations for A and q by the averaging method in [9]: 

-- 2 w A, cos2q, n -  ~,5 I~-~62+f',,) A,, 
�9 ' 4 2 ( 1 1 )  

~"~, - -  ~;" m ~"~, 3 ~I,,,A,,. 

The equilibrium state J = a cp= (! of the truncated system of equations (11) corresponds to 
steady-state periodic vibrations of the string. The dependence of the steady-state vibration 
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amplitude on the frequency deviation has the form 
,- , 

, , / , <  1 (.,),, - " I - -  4 ~ ~ I  - - - - w "  ( '~I -~ -T( ] ( '~ . ,AI~  " l))" 

Here we have introduced the notation ~ ~ (~n -- ~)/~ ~ (~n 2 -- w2)/2~2, which characterizes the 
relative deviation of the current fluctuation frequency ~ from the small-amplitude natural 
frequency w n of the string. Expression (12) describes resonance curves emanating from the 
points 

,((%.)- 
~'~'~:' = • ~-', (~'-~.') l I/ m?--- \ . ,  ) , 

which merge at the point corresponding to the maximum Vibration amplitude: 

~/'R/ 8 ~7-~,--2~ (13) 
Am~x-- 36~ 

From this result we readily deduce the parametric instability threshold (~ = O, A n = 0): 

26~ { r ] (14) 
m, =~ o)~ \ ( % . ] "  

We note that whereas the vibration amplitude (12) exhibits a complicated dependence on 
all the quantities involved in Eq. (9), the instability threshold m, and the maximum Vibra- 
tion amplitude Ama x are determined only by the modulation factor m for the tension of the 
string and by the linear and nonlinear damping factors 61 and 62. The nonlinear restoring 
force governs only the frequency deviation (skeleton curve). The stability problems of the 
periodic solutions (10) have been treated in detail previously [8, 9] and will not be dis- 
cussed here. 

DISCUSSION 

The results can be used to compare the experimental data with theoretical calculations 
based on the model (5)-(8). Using the experimental data, we can calculate the heat-transfer 
coefficient ~ according to (7). It varies linearly from 50 to 60 W/mi'~ in the temperature 
interval 500-1500~ and it can be considered practically constant on the working section. 
Knowing all the necessary constants of the material~ (Nichrome Khi0NS0) [10, 11], we can find 
the relative temperature fluctuation O, /T m and the tension modulation factor m. The calcula- 
tions show that the tension factor m varies by tens of percents, even though the temperature 
of the string varies by less than 0.05% of its mean value as a result of transient heat trans- 
fer (Fig. 5, in which lines I and 2 correspond to nodes and antinodes, respectively). This 
amount is sufficient for the parametric excitation of vibrations, as was indeed observed ex- 
perimentally. Relations (13) and (14) enable us to calculate the damping factors, which are 
equal to the following in the given situation: 61 = 1.5 see-Z; 62 = 1.5"107 sec-1"m -2. With 
the use of these constants, relations (12) permit the amplitude of the steady-state vibrations 
to the plotted as a function of the frequency deviation (see Fig. 2, in which curves I and 2 
correspond to m = 0.12 and m = 0.14, respectively). Expression (13) describes the dependence 
of the steady-state amplitude on the ac power at a constant deviation E0 (see the solid curve 
in Fig. 3; 61 = 1.5 sec -I , 62 = 1.5"10 ? see-l'm -2 , ~0 ~-O.20). 

Comparing the theoretical calculations with the experimental data, we arrive at the fol- 
lowing conclusion. The adopted theoretical model correctly predicts the possibility of ther- 
moparametric excitation of vibrations in a string carrying an alternating electric current. 
It permits the parametric instability threshold to be calculated quite accurately, along with 
the dependence of the steady-state vibration amplitude on the ae power and the deviation of 
the temperature fluctuation frequency from the natural frequency of the string (E). On the 
other hand, it cannot be used to predict the existence of such an essentially nonlinear effect 
as the hard excitation regime and the cutoff of vibrations. The latter result is evidently 
associated with the existence of singular aspects of the heat transfer process between the 
vibrating string and the surrounding air that are not described by the heat-conducting equa- 
tion (3). The detailed discussion of this topic poses a complex problem and is beyond the 
scope of the present study. 

~In the calculations, allowance has been made for the fact that the Young'smodulus Edecreases 
by approximately 20-25% according to a linear law with increasingtemperature in the working range. 
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DETERMINATION OF THE EFFECTIVE ELASTIC MODULI OF INHOMOGENEOUS MATERIALS 

V. V. Novikov UDC 539.3 

I. FORMULATION OF THE PROBLEM 

Quasihomogeneous media that possess effective properties dependent on the properties, 
volume concentration, and contact conditions of the components are usually investigated when 
examining the effective properties of inhomogeneous materials. The necessary and sufficient 
condition for going over to the quasihomogeneous medium is compliance of the dimension of 
the inhomogeneity ~ with the inequality 

1,, << 1 << L, (1.1) 
where ~0 is the crystal lattice constant and L is the specimen dimension. 

The effective elastic moduli Cijk~ and the pliability Sijk7 are determined from the equa- 
t ions 

<e/j> = C~jt, t @kz>, <eij> =: ~'iy/~ (~J,t>" ( I. 2) 

The angular brackets <...> here denote taking the average over the volume of the material 

1 ,i") 1 ~ ~ 
<~ ~:= ~ j ~ SoiJ(rd'~ld'r2d'rF <~0> ..... T"J.!Ssljt")d"]dr2dr'~" (1.3) 

V V 

The equations 

oi;(,-) .... (:i.ihl(,')~:Ijr). ~ij(r)  . .~'ij~r (1.4) 

are valid for the local domains (components) when conditions (1.1) are satisfied, where oij(r) 
is the local stress tensor, Eij(r) is the local strain tensor, and r = xli + x2j + x3k is a 
radius-vector. 
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